
The Source Science beneath

About Doug Matzke

\bigcirc

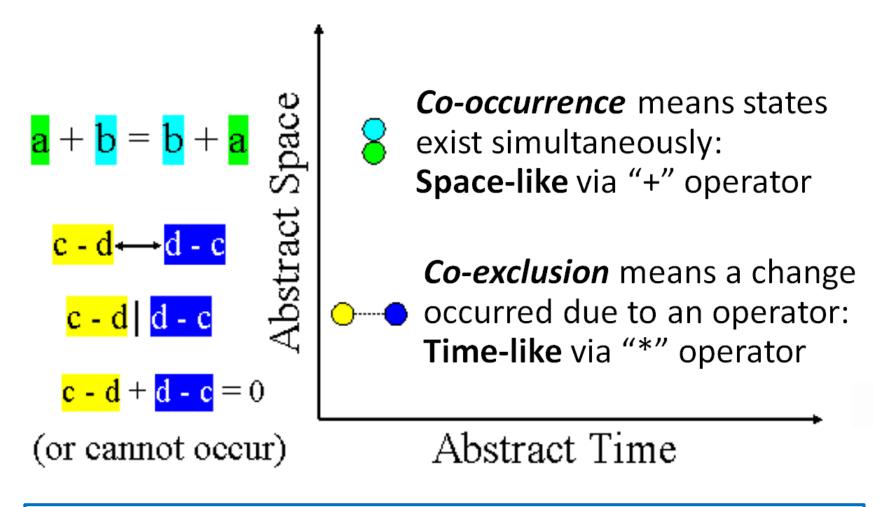
- My moniker is Quantum Doug
- Programming for over 50 years
- Chairman of PhysComp '92 and PhysComp '94
 - ANPA Session in PC'94
- Written over 40 papers/talks and 10 patents
 - Will Physical Scalability Sabotage Perf. Gains?
- PhD in Quantum Computing in 2002 at UT Dallas
 - Quantum Computing using Geometric Algebra
 - Built GALG symbolic math tool in python
 - GALG research for last 20 years (w/Mike Manthey)
- Awarded \$1 million SBIR grants on topics:
 - Neural and quantum computing
- Certified master practitioner in Neuro-Linguistics-Programming (NLP)
- Deep Reality book coauthored with William A. Tiller
 - Source Science and bit-physics

Abstract

Quantum physics is more fundamental than classical physics and can be derived purely from bits by using geometric algebra. The paper is a survey of the proto-physics research that I and Mike Manthey have completed over the last 25 years. This work is the math and physics supporting the Source Science model of my upcoming book: Deep Reality

Source Science Foundations (It from Bit)

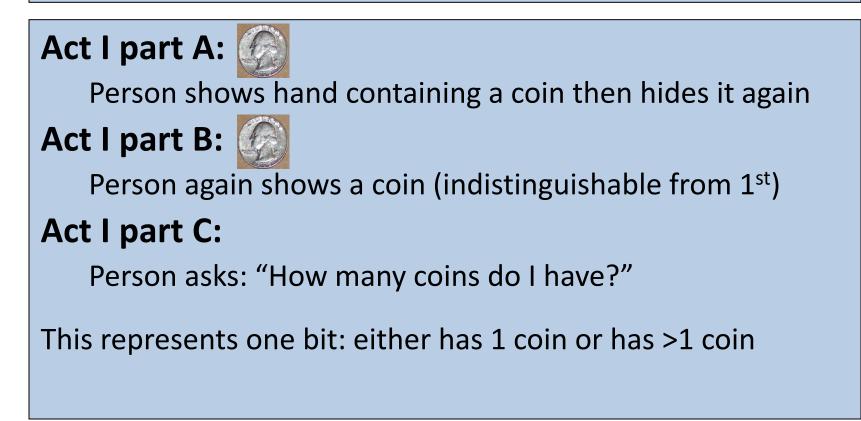
 \bigcirc


Richard Feynman said: "The world is not classical dammit, it's quantum mechanical"

- 1. Information is Physical (not just mathematical)
 - Rolf Landauer: Erasing information loses energy (measured in 2014)
 - John Wheeler: "It from Bit" since a bit is smallest change to a black hole
 - Bits are physical and have an effective energy and an equivalent mass
- 2. Reality is Hyperdimensional (not 3 space + 1 time dimensions)
 - Bits, qubits and ebits are very real with essential novel behaviors
 - Bit is one dimensional and is used to make qubits and ebits
 - Qubit is quantum primitive for superposition with 2 private bit dimensions
 - Ebit is quantum primitive for entanglement with 4 private bit dimensions
 - Shor's algorithm uses 2¹⁰⁰⁰ states to compute faster than any classical computer
- 3. Thoughts are quantum things-not in the brain (Descartes assumption is false)
 - Thoughts are "information things" and intentions affect the physical world.
 - Thoughts can "directly" affect REG PK devices in the physical world (even brain)
 - Solution required to show how non-physical mind can influence order/disorder

"Quantum mechanics is the dreams that stuff is made of"

Non-metric Protospace and Prototime


Simultaneous of "+" is absolute and not relativistic – space-like

Energy of Big Bang from Bits: Coin Demo: Act I

Setup:

Person stands with both hands behind back

Coin Demo (continued)

Act II:

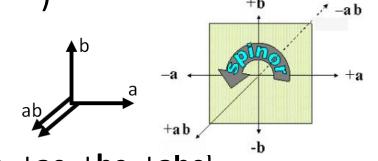
Person now holds out hand showing two identical coins

We receive one bit since ambiguity is resolved!

Act III: co-occurrence

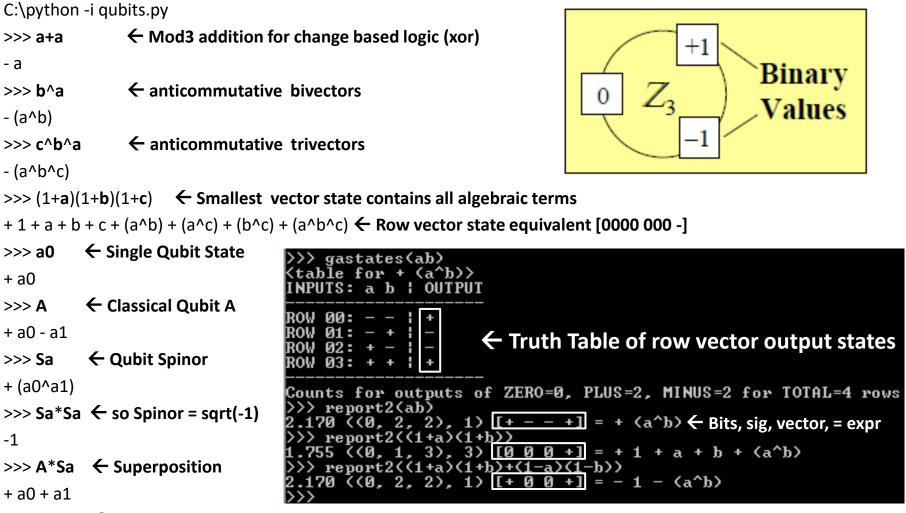
Asks: "Where did the bit of information come from?"

Answer: Simultaneous presence of the 2 coins!


Landauer Principle: info creation = effective Energy

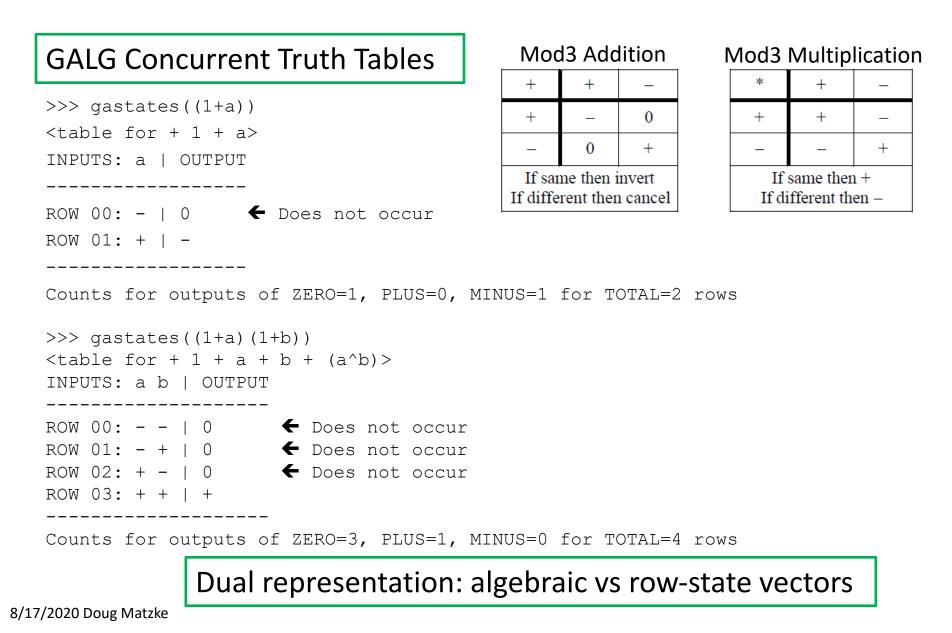
Non-Shannon space-like information derives from simultaneity!

Introduction to GALG


- Scalars, vectors, bivector, trivectors, n-vectors, multivectors
- > Multivector Spaces (for G_n size is $3^{(2^{**n})}$)
 - G₀ is size 3: {0, ±1}
 - G₁ is size 9: {0, ±1, ±a}
 - G₂ is size 81: {0, ±1, ±a, ±b, ±ab}
 - G₃ is size 6,561: {0, ±1, ±a, ±b, ±c, ±ab, ±ac, ±bc, ±abc}
 - G₄ is size 43,046,721: {0, ±1, ±a, ±b, ±c, ±d, ..., ±bcd, ±abcd}
- > Arithmetic Operators over $Z_3 = \{\pm 1=T/F, 0=\text{does not exist}\}$
 - +, * (geometric ~ ⊗), outer (a^a=0,a^b=ab), inner (a•a=1,a•b=0)
- Anti-commuting vector space (geom product a*b = a•b+a^b)
 - $\mathbf{a}^{\mathbf{b}} = -\mathbf{b}^{\mathbf{a}} \rightarrow (\mathbf{a}^{\mathbf{b}})^2 = \mathbf{a}\mathbf{b}\mathbf{a}\mathbf{b} = -1$ all bivectors $\mathbf{x}^{\mathbf{v}}\mathbf{y} = \sqrt{-1}$ = spinor *i*
- Co-occurrence (+) & co-exclusion: (a-b)+(-a+b)=0 implies ab
- \succ Row vector truth table duality (e.g. $\pm(1+a)(1+b)=[0\ 0\ 0\ \pm]$).

Geometric Algebra Tools

Custom symbolic math tools in Python (operator overloading):


>>> A*B ← Quantum Register (where B = + b0 - b1)

```
+ (a0^b0) - (a0^b1) - (a1^b0) + (a1^b1)
8/17/2020 Doug Matzke
```


Algebraic Multivectors vs State spaces

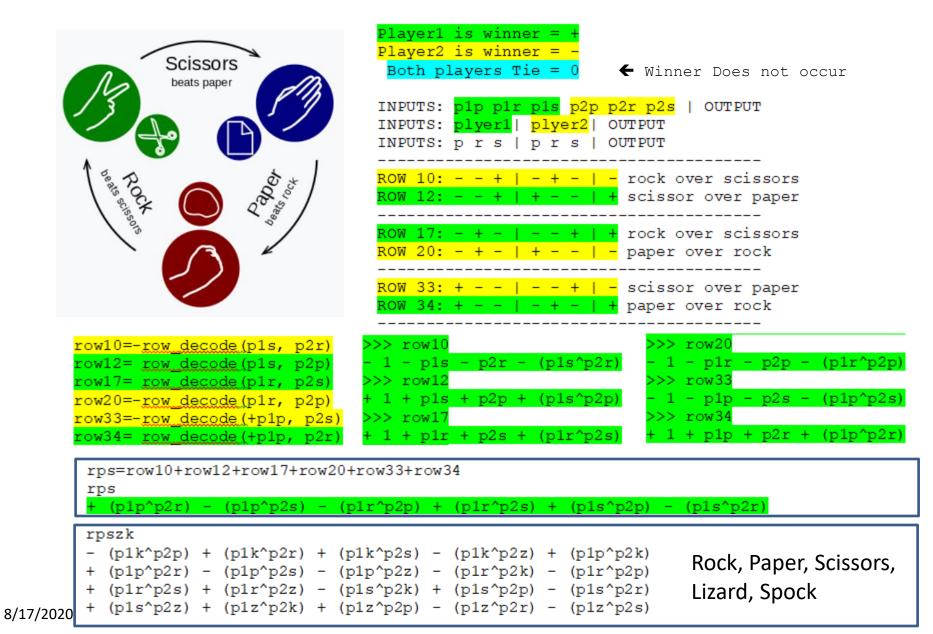
Algebraic vs State spaces (cont.)

>>> gastates((1+a) (1+b) (1+c)) INPUTS: a b c | OUTPUT ROW 00: - - - | 0 ← Does not occur ROW 04: + - - | 0 ← Does not occur ROW 07: + + + | -

Counts for outputs of ZERO=7, PLUS=0, MINUS=1 for TOTAL=8 rows

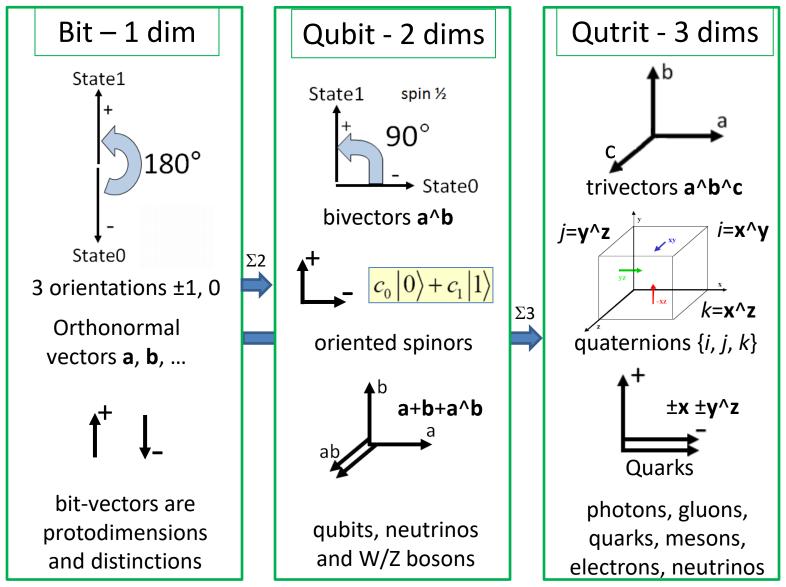
Each row-state is multi-vector sum of all N-vectors

Algebraic vs State spaces (cont.)


<pre>>>> gastates((1+a) (1+b) (1+c) + (1-a) (1-b) (1-c))</pre>
ROW 00: -
ROW 01: + 0
ROW 02: - + - 0 ← Does not occur
ROW 03: - + + 0
ROW 04: + 0
ROW 05: + - + 0
ROW 06: + + - 0
ROW 07: + + + -

Counts for outputs of ZERO=6, PLUS=0, MINUS=2 for TOTAL=8 rows

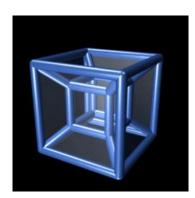
row-states are linearly independent


Concurrency: Rock, Paper, Scissors


Introduction to Graded Spaces

See operators for qubit and qutrit online in my PhD dissertation

Introduction to 4 dimensional ebits

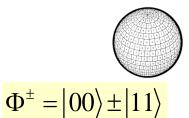

Ebits: Detailed Bell/Magic States

> Bell/Magic Operators (in \mathbb{G}_4):

- Bell operator B = S_A + S_B = a0^a1 + b0^b1
- Magic operator *M* = S_A S_B = a0[^]a1 b0[^]b1

▶ Bell/Magic operators $B = B^4$ and $M = M^4$ form ring states B_i and M_i :

$B_{(i+1)mod4} = B_i \left(S_A + S_B \right)$	$M_{(i+1)mod4} = M_i \left(S_A - S_B\right)$
$B_0 = A_0 B_0 Bell = -S_{00} + S_{11} = \Phi^+$	$M_0 = A_0 B_0 Magic = + S_{01} - S_{10}$
$B_1 = B_0 Bell = + S_{01} + S_{10} = \Psi^+$	$M_1 = M_0 Magic = -S_{00} - S_{11}$
$B_2 = B_1 Bell = + S_{00} - S_{11} = \Phi^-$	$M_{2} = M_{1} Magic = -S_{01} + S_{10}$
$B_3 = B_2 Bell = -S_{01} - S_{10} = \Psi^-$	$M_{3} = M_{2}$ Magic = + $S_{00} + S_{11}$
$B_0 = B_3 Bell = -S_{00} + S_{11} = \Phi^+$	$M_0 = M_3$ Magic = + $S_{01} - S_{10}$


 $\Psi^{\pm} = |01\rangle \pm |10\rangle$

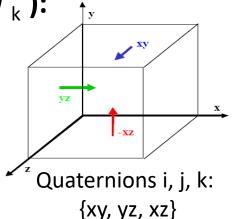
4D tesseract

Cannot factor: ± a0^b0 ± a1^b1 (Inseparable and is singular)

> Bell and Magic operators are irreversible in \mathbb{G}_4 (different than Hilbert spaces)

- See proofs that $1/(S_A \pm S_B)$ does not exist for Bell (or Magic) operators
- Multiplicative Cancellation Information erasure is irreversible
 - Qubits $A_0 B_0 = + a0^{b0} a0^{b1} a1^{b0} + a1^{b1} = B_3 + M_3$
 - $0 = \text{Bell} * \text{Magic} = \text{Bell} * M_j = \text{Magic} * B_i = B_i * M_j$
- > Also works for higher dimensions $B = S_A \pm S_B \pm S_C \pm ...$ (roots of unity)

TauQuernions: Entangled Quaternions in \mathbb{G}_4


> TauQuernions $(\mathcal{T}_{i}, \mathcal{T}_{j}, \mathcal{T}_{k} \& \text{ conjugate set } \mathcal{T}_{i}', \mathcal{T}_{j}', \mathcal{T}_{k}')$:

Entangled Quaternion isomorphs

•
$$M = T_i = ab - cd$$
, $T_j = ac + bd$ and $T_k = ad - bc$

•
$$\mathcal{B} = \mathcal{T}'_i = ab + cd$$
, $\mathcal{T}'_j = ac - bd$ and $\mathcal{T}'_k = ad + bc$

- Anti-Commutative: $\mathcal{T}_{x} \mathcal{T}_{y} = -\mathcal{T}_{x} \mathcal{T}_{y}$
- $T_i^2 = T_j^2 = T_k^2 = T_i T_j T_k = I^- = (1 + abcd)$ (sparse -1)
- $(I^{-})^{2} = I^{+} = (-1 \pm abcd)$ (sparse +1: is idempotent)

>>> report4(1-abcd)																	
18.868 ((0, 8, 8), 1)	[0 -	· - () —	Ø	0 -		Ø	Ø	- 0		- 01	=	÷	1	_	(a^b^c^d)	>
<pre>>>> report4(-1-abcd)</pre>																	
18.868 ((0, 8, 8), 1)	[+ 0	0	F Ø	+	+ (a 0	+	+	0+	00) +]	=	-	1	-	<a^b^c^d< td=""><td></td></a^b^c^d<>	

b^c^d>	$B^{2} + M^{2} = -1$ $B^{4} + M^{4} = +1$
J T	$\boldsymbol{\mathcal{T}}_{k}$

*	$oldsymbol{\mathcal{T}}_{i}$	l $\boldsymbol{\mathcal{T}}_{\mathrm{i}}$	$oldsymbol{\mathcal{T}}_{k}$
$m{T}_{i}$	1 + abcd	−ad + bc	ac + bd
${m T}_{ m i}$	ad – bc	1 + abcd	–ab + cd
$m{J}_k$	–ac – bd	ab – cd	1 + abcd

*	T i	Γ γ	$oldsymbol{\mathcal{T}}_{k}$
T _i	"-1"	$-\boldsymbol{\mathcal{T}}_{k}$	$oldsymbol{\mathcal{T}}_{\mathrm{i}}$
$oldsymbol{\mathcal{T}}_{\mathrm{i}}$	$\boldsymbol{\mathcal{T}}_{k}$	"-1"	- T _i
$\boldsymbol{\mathcal{T}}_{k}$	- <i>T</i> i	${\cal T}_{ m i}$	"-1"

${oldsymbol{\mathcal{T}}_{i}}$	${oldsymbol{\mathcal{T}}_{i}}$	$oldsymbol{\mathcal{T}}_{k}$
Magic	$M_3 = -M_1$	$M_0 = -M_2$
Magic	$M_3 = -M_1$	$M_2 = -M_0$
Magic	$M_1 = -M_3$	$M_0 = -M_2$
Magic	$M_1 = -M_3$	$M_2 = -M_0$

$m{T}_{ m i}^{\prime}$	Γ '	${oldsymbol{\mathcal{T}}_{k}}$,
Bell	$\mathbb{B}_2 = -\mathbb{B}_0$	$\mathbb{B}_1 = -\mathbb{B}_3$
Bell	$\mathbb{B}_2 = -\mathbb{B}_0$	$\mathbb{B}_3 = -\mathbb{B}_1$
Bell	$\mathbb{B}_0 = -\mathbb{B}_2$	$\mathbb{B}_1 = -\mathbb{B}_3$
Bell	$\mathbb{B}_0 = -\mathbb{B}_2$	$\mathbb{B}_3 = -\mathbb{B}_1$

${\it B}$ and ${\it M}$					
operators are					
used as states					

Higgs Bosons are Entangled in \mathbb{G}_4

- > The proposed Higgs Boson in \mathbb{G}_4 :
 - $\mathcal{H} = \mathcal{T}_i + \mathcal{T}_j + \mathcal{T}_k$ (where $\mathcal{H}^2 = 0$) (sum of 3 tauquernions)
 - Eight triples: $\pm T_i \pm T_j \pm T_k$ (and 8 more for $\pm T'_i \pm T'_j \pm T'_k$)
- > Also various factorizations:
 - H = (±1 ±abcd)(ab + ac + bc) Time-like mass acts on Space
 - $\mathcal{H} = (\mathbf{a} + \mathbf{b} \mathbf{c})\mathbf{d} + \mathbf{a}\mathbf{b} + \mathbf{a}\mathbf{c} \mathbf{b}\mathbf{c}$ Light and space (quaternion)
 - \mathcal{H} is its own anti-particle (when using $-\mathcal{T}_i$)

 \succ The Higgs $\mathcal H$ and proto-mass $\mathcal M$ cover even subalgebra:

• $\mathcal{H} = \{\mathbf{X} = \pm \mathbf{ab} \pm \mathbf{ac} \pm \mathbf{bc} \pm \mathbf{ad} \pm \mathbf{bd} \pm \mathbf{cd} \mid \mathbf{X}^2 = 0\}$ (16) For $\mathbf{X} = \mathcal{H}$ then $\mathbf{X} = \mathbf{abcd} = \mathbf{X} = \pm \mathbf{X}$

•
$$\mathcal{M} = \{X = \pm ab \pm ac \pm bc \pm ad \pm bd \pm cd \mid X^2 = \pm abcd\}$$
 (48)
For X = \mathcal{M} then only X abcd = abcd X
sig ((4, 6, 6), 6) = 32 and sig ((0, 6, 10), 6) = 16

Dark Bosons are also Entangled in \mathbb{G}_4

Rotations (wx+yz)(xyz) = (-x+wyz) and also (w+xyz)(wxy) = (wz+xy)

State Name	Entangled State	\mathcal{D}_{B} = State * (wxy)†	
Bell	+ wx + yz	- y - wxz	
B0	- wy + xz	- x + wyz	
B1	+ wz + xy	-w-xyz	
B2	+ wy – xz	+ x – wyz	74% Dark Energy
B3	- wz - xy	+ w + xyz	7470 Bark Energy
			22% Dark
Magic	+ wx – yz	-y+wxz	Matter
M0	+ wz – xy	+ w – xyz	
M1	-wy-xz	- x - wyz	4% Atoms
M2	– wz + xy	– w + xyz	Quarks: ± w ± xy
M3	+ wy + xz	+ x + wyz	Dark bosons: ± w ± xyz

+ Results are dark bosons \mathcal{D}_{B} where $(\mathcal{D}_{B})^{2} = 0$ and are entangled since \mathcal{D}_{B} are not separable.

Dark Matter is Entangled in \mathbb{G}_4

 $\succ \text{ Define set } \mathcal{D} \text{ as } sum of 4 dark bosons (count 256) : \\ \mathcal{D} = \{(\pm w \pm xyz) + (\pm x \pm wyz) + (\pm y \pm wxz) + (\pm z \pm wxy)\}$

where \mathcal{D} is the largest *odd sub-algebra* of \mathbb{G}_4 and rotations {**xyz** \mathcal{D} } = {-1 + **wxyz** + $\mathcal{H} \cup \mathcal{M}$ }

 \succ The elements of \mathcal{D}^2 form three (four) subsets:

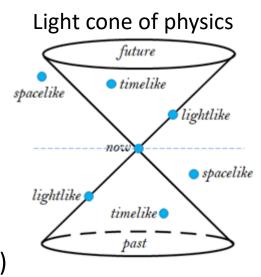
 $\mathcal{D}_{q} = \{\mathcal{D} \in D \mid D^{2} = xy + xz + yz\}$ (count 128, sig ((2, 7, 7), 8), 6.87 bits)

 $\mathcal{D}_0 = \{\mathcal{D} \in D \mid D^2 = 0\}$ (Bosons) (count 32, sig ((4, 4, 8), 8), 5.53 bits)

 $\mathcal{D}_{u} = \{\mathcal{D} \in D \mid D^{2} = (\mathbf{w} + \mathbf{x})(\mathbf{y} + \mathbf{z}) \& D^{8} = 1 (2 \text{ qubits}) \text{ (count 96)} \}$

• \mathcal{D}_{u} with (count 80, sig ((4, 4, 8), 8), 5.53 bits)

D_u with (count 16, sig ((1, 1, 14), 8), 15.9 bits)



Entanglement and Space-Like States

All GALG addition represents space-like states:

- Qubit states define ideal concurrency (2D)
- > Bell operator represents operator concurrency ($S_a \pm S_b$)
- > Qubits combine to form quantum registers (2^q states)
- Ebit states represent a qubit embedded in 4D
 - Bell operator is 4D Hadamard gate for Bell states
 - Multiplicative cancellation is irreversible in GALG
 - Bell states are stable due to state erasure (entangled)
 - Pauli noise/measurement injects info forcing decoherence
- Higgs Boson is space-like complete even subalgebra (entangled)
- > Dark quarks are bosonic and inseparable space-like (entangled)
- Protons are space-like tri-quark summation
- Dark matter are space-like quad-dark-quark summation (entangled)
- Significant that all states are operators verbnoun balanced
 - Quantum von Neumann architecture (states 🖙 operators)
 - Hilbert spaces are not verbnoun balanced (column vs matrix)

Bosons X²=0 (Nilpotents)

Find all bosons in G using: gasolve([a,b, ...], lambda X: X*X, 0)

Space	Count	Boson Multivector	Boson Description		
$\mathbb{G}_{0} \& \mathbb{G}_{1}$	Total 0	Exclude 0 from this table	0 ² =0		
G ₂	Total 8		(qubit space)		
	8	$\pm \mathbf{x} \pm \mathbf{x}\mathbf{y} = \pm \mathbf{x}^*(1 \pm \mathbf{y})$	Weak Force Bosons W/Z		
G ₃	Total 80	*quarks are: ±x ±yz	(Standard model Space)		
	8	±a ±b ±c	Photonic Boson (Qutrit)		
	24	±x ±xy	Weak Force Bosons in \mathbb{G}_3		
	8	±ab ±ac ±bc	Quaternions are bosonic		
	24	±x ±z ±xy ±yz	Mesons are two quarks		
	16	±x ±y ±z ±xy ±xz ±yz	Strong Force (Gluons)		
G ₄	Total 7,280		30 Different signatures		
	80	± x ± xy and ± w ± xyz	Weak and Dark Bosons		
	528	(ab - cd) + (ac + bd) + (ad - bc) &	16 Higgs Boson & others		
			28 more signatures		
G ₃ is equiv	\mathbb{G}_3 is equivalent to Pauli Algebra and \mathbb{G}_4 contains Dirac Algebra. Also Parsevals Identity				

Particles X²=1 (Unitary)

Find all unitaries in G using: gasolve([a,b, ...], lambda X: X*X, 1)

Space	Count	Unitary Multivector	Particle Description
\mathbb{G}_1	Total 2	± a	Exclude scalar value of ±1
G ₂	Total 12		(qubit space)
	4	±x	Vectors are distinctions
	8	±a ±b ±ab	Neutrinos
G ₃	Total 90	*quarks are: ±x ±yz	(Standard model Space)
	6	±x	Vectors are distinctions
	24	±x ±y ±xy	Neutrinos (3x8=24)
	12	±xy ±xz	Electrons (3x4=12)
	48	±x ±y ±z ±xy ±xz	Protons (neutrons = xyz protons)
G ₄	Total 12,690		17 Different signatures
	10	±x and ±wxyz	Vectors and Mass Carrier
			16 more signatures

For $X^2 = X$ (Idempotent) and $U^2 = 1$ (Unitary) then $X = -1 \pm U$ (proof $X^2 = (-1 \pm U)^2 = X$)

Standard Model in $\mathbb{G}_2 \& \mathbb{G}_3$

		D	Ū	Ē			S	\bar{C}	\bar{S}				-	5	-
Name	U	D	\overline{U}	\bar{D}	Name	C				Name	Т	В	Ŧ	B	
Form	a + bc	-a + bc	-a - bc	a - bc		b + ac	-b + ac	-b-ac	b-ac	Form	c + ab	-c + ab	-c-ab	c-ab	Z ₅
Charge	$+\frac{2}{3}$	$-\frac{1}{3}$	$-\frac{2}{3}$	$+\frac{1}{3}$	Charge	$+\frac{2}{3}$	$-\frac{1}{3}$	$-\frac{2}{3}$	$+\frac{1}{3}$	Charge	$+\frac{2}{3}$	$-\frac{1}{3}$	$-\frac{2}{3}$	$+\frac{1}{3}$	_ _5
Color	r	\overline{r}	\bar{r}	r	Color	g	\bar{g}	\bar{g}	g	Color	b	b	b	b	J,
Name	Fo	rm	Vector ($\mathcal{G}_2)$	Signature	Bits			I	II		·			
ν	a +	b + ab	[- 0]	(0, 1, 3), 3	1.75									
ν_{μ}	<i>a</i> –	b-ab	[0	-1	"			lass→ 2.4		1.27 GeV		.71.2 GeV/d	0		
ν_{τ}	-a +	b-ab	[-0-	-1	"		cha	arge→ ⅔	11	2/3	3/		$\sim \gamma$		
$\Sigma =$		b-ab	[0 + +	-	"			spin→ ½	u	1/2 U	1/	2 L	1		
	<i>w</i> 1	0 40		' 1			n	ame→	up	charm	n 📕	top	phot	on 📘	
$\bar{\nu}$	-a –	b-ab	[+ + +	0]				\rightarrow							
$\bar{ u}_{\mu}$	-a +	b + ab	[++0]	+]					MeV/c ²	104 MeV,	18	.2 GeV/d	0		
$\bar{\nu}_{\tau}$	a -	b + ab	[+0+]	+]				-1/3				1/3 h		•	
$\Sigma =$	- <i>a</i> -	b + ab	[0	-]				<u> </u>		- ¹ ∕3 S			Ľ		
Name	Form	n V	Vector (\mathcal{G}_{3}	3)	Signature	Bits		Quarks	down	½ ℃ strang		bottom	gluc	in	
e	ab +	<i>ac</i> [-	-00 + +00	-]	(2, 2, 4), 2	4.70									
\overline{e}	-ab -	L -	-0000	· .				<2	.2 eV/c²	<0.17 Me	V/d <	15.5 MeV/d	91.2 Ge	v/d	
e -	ab -	L .	-+00+	-				>	••					20	
\bar{e}^{-}	-ab +	ac [0]	+ -00	+0]				1/2	Ve	$^{\circ}_{\frac{1}{2}}V_{\downarrow}$		$_{2}V_{\tau}$			
μ	ab +	L	0 + 00 + 0	4					lectron	muon		tau			
$\bar{\mu}$	-ab -	L .	0 - 00 - 0						eutrino	neutrin		neutrino	Z bos		s
μ^-	ab -		-0 + +0 -	-											u o
$\bar{\mu}^{-}$	-ab +	<i>bc</i> [0 -	+00000000 -	+ 0]				0.51	L1 MeV/c ²	105.7 MeV	//d 1	777 GeV/d	80.4 Ge	V/d²	Gauge bosons
au	ac +		+0000 +	-				ω -1	\mathbf{O}	-1 .	-	1 👝	± 1		ă
$\overline{\tau}$	- <i>ac</i> -	-	- 0000 -	-				UO 1/2		¹ /2 μ	1/	5 U		\mathbf{V}^{-}	ge
τ-	ac -	-) - + + -	-		"		eptons	lectron	muor		tau	W bo	son	au
$ au^-$	-ac +	<i>bc</i> [00)++	00]					ICCUON	muor		tau			Ö

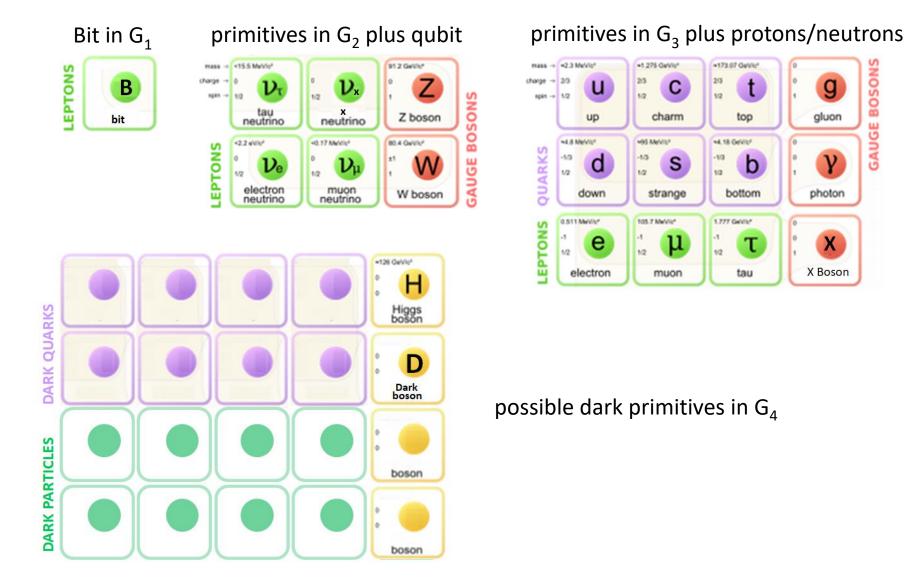
Graded Standard Model with GALG

GAUGE BOSON

g

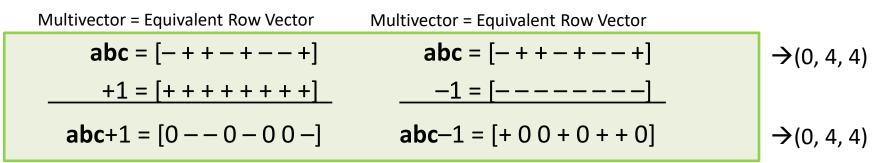
gluon

γ


photon

X

X Boson


b

τ

Complexity Signatures

Given any multivector in \mathbb{G}_n and its corresponding row-state vector, compute a tuple (#0s, #+s, #-s) based on the counts of elements in the row vector. The sorted tuple, represents the state complexity of the multivector.

Space	Signature	Count	Description	Structural complexity	Bits
n=0	(0, 0, 1)	3	Scalars $\{0, \pm 1\} \rightarrow [\pm]$	0	0
n=1	(0, 0, 2)	3	Scalars $\{0, \pm 1\} \rightarrow [\pm \pm]$	0	1.58
all=9	(0, 1, 1)	6	Vectors $\pm \mathbf{x} \& \pm 1 \pm \mathbf{x} \rightarrow [\pm \mp]$	1	0.58
n=2	((0, 0, 4), 0)	3	Scalars $\{0, \pm 1\} \rightarrow [\pm \pm \pm \pm]$	0	4.75
all=81	((0, 1, 3), 3)	24	Row Decode ±(1± x)(1± y)	3	1.75
	((0, 2, 2), 1)	18	Singletons ± x and ± xy	1	2.17
	((1, 1, 2), 2)	36	± x ± y and ±1 ± x ± y	2	1.17

Add structural complexity (singleton count) to the signature to support larger spaces.

* Coin Demo 1.000 bit = 2.170 – 1.170

More Signatures in $\mathbb{G}_3 \& \mathbb{G}_4$

Space	Signature	Count	Description	Bits			
n=3	((0, 0, 8), 0)	3	Scalars $\{0, \pm 1\} \rightarrow [\pm \pm \pm \pm \pm \pm \pm]$	11.1			
6,561	((0, 1, 7), 7) 4		Row Decode $\pm (1\pm \mathbf{w})(1\pm \mathbf{x})(1\pm \mathbf{y}) \rightarrow [\pm 000\ 0000]$	7.09			
	((0, 2, 6), 3)	168	±x ±y ±xy	5.29			
	((0, 3, 5), 6)	336	±x ±y ±xy ±xz ±yz ±xyz	4.29			
	((0, 4, 4), 1)	42	Singletons ± x , ± xy and ± xyz	7.29			
	<mark>((0, 4, 4), 4)</mark>	168	Some variations of ±y ±z ±xy ±xz	5.29			
	((2, 2, 4), 2)	252	Co-occurrence ±x ±y is a qubit	4.70			
	((2, 3, 3), 3)	672	Co-occurrence ±x ±y ±z is a photon	3.29			
	<not 14="" 5="" bins="" of="" shown="" signatures="" total=""></not>						
	((1, 3, 4), 4)	1,344	Smallest information content in G ₃ (e.g. ±a±b±c±xy)	2.29			
n=4	((0, 0, 16), 0)	3	Scalars $\{0, \pm 1\} \rightarrow [\pm \pm $	23.8			
3 ^(2**n)	((0, 1, 15), 15)	96	Row Decode $\pm (1\pm \mathbf{w})(1\pm \mathbf{x})(1\pm \mathbf{y})(1\pm \mathbf{z})$	18.8			
	((0, 8, 8), 1)	90	Singletons ± x , ± xy , ± xyz and ± wxyz	18.9			
	((4, 4, 8), 2)	1,260	Co-occurrence ±x ±y, ±wx ±yz , ±w ±xyz	15.1			
	<not 81="" 86="" bins="" of="" shown="" signatures="" total=""></not>						
	((4, 5, 7), 11)	Smallest information content in \mathbb{G}_4 (11 singletons)	3.09				

Big Bang Fueled by Bit Bang

Particle/	Form	Vector samples (G ₃)	Signature(s)(G ₃)	\mathbb{G}_1	G ₂	G3	\mathbb{G}_4			
	G ₀ (of size 3)									
Void $\rightarrow 0$ is		[0 0 0 0 0 0 0 0]	$\in ((0, 0, 8), 0)$	1.58	4.75	11.1	23.8			
±1 are		$[\pm \pm \pm \pm \pm \pm \pm \pm]$	∈ ((0, 0, 8), 0)	1.58	4.75	11.1	23.8			
G1 (0	of size 9)	•	ł	i.	•	•				
а	±exist	[+++]	∈ ((0, 4, 4), 1)	0.58	2.17	7.29	18.9			
1 -a	measure	[0000]	∈ ((0, 4, 4), 1)	0.58	2.17	7.29	18.9			
Row 0 (1	L-w)(1-z)	[+000000] (0,1,1),(0,2	1,3),(0,1,7),(0,1,15)	0.58	1.75	7.09	18.8			
G2 (0	G ₂ (of size 81)									
ab	±spin carrier	[+ + + +]	∈ ((0, 4, 4), 1)	-	2.17	7.29	18.9			
1+ab		[0000]	∈ ((0, 4, 4), 1)	-	2.17	7.29	18.9			
a+b+ab	neutrino	[00]	∈ ((0, 2, 6), 3)	-	1.75	5.29	15.6			
a+b	qubit, co-occ	[++0000]	∈ ((2, 2, 4), 2)	-	1.17	4.70	15.1			
a+ab	Weak W,Z†	[0 0 + + 0 0]	∈ ((2, 2, 4), 2)	-	1.17	4.70	15.1			
G ₃ (o	of size 6561)									
abc ±	charge carrier	[-++-+]	∈ ((0, 4, 4), 1)	-	-	7.29	18.9			
a+bc	quarks	[0 + + 0 - 0 0 -]	∈ ((2, 2, 4), 2)	-	-	4.70	15.1			
ab+ac	electron	[-00++00-]	∈ ((2, 2, 4), 2)	-	-	4.70	15.1			
a+b+c+a	b+ac proton	[0++-]	∈ ((1, 2, 5), 5)	-	-	2.70	11.5			
<u>a+b+c</u>	photon	[0 + - + + 0]	∈ ((2, 3, 3), 3)	-	-	3.29	12.1			
ab+ac+b	c 3-space	[00]	∈ ((0, 2, 6), 3)	-	-	5.29	15.6			
a+b+c+ab	o+ac+bc gluon	[0 + + 0 + 0 0 0]	∈ ((0, 3, 5), 6)	-	-	4.29	13.1			
a+b+c+ab	o-ac+bc EMF	[+ 0 0 + - +]	∈ ((2, 3, 3), 6)	-	-	2.70	7.08			
+ Tentative; <u>bosons (nilpotent)</u>			Higher Entropy	Lower E	ntropy					

Entanglement, Mass & Higgs in \mathbb{G}_4

Particle/Form	Vector samples (G ₄)	Signature(s)(C ₄)	\mathbb{G}_1	\mathbb{G}_2	G3	\mathbb{G}_4
G ₄ (of size 43,046,721)						
abcd ±mass carrier	[++++-++-+]	\in ((0, 8, 8), 1)	-	-	-	18.9
1 – abcd	[0 0 - 0 0 0 0 - 0 - 0]	\in ((0, 8, 8), 1)	-	-	-	18.9
A ₀ B ₀ 2-qubits	$[0\ 0\ 0\ 0\ 0\ +\ -\ 0\ 0\ -\ +\ 0\ 0\ 0\ 0\ 0]$	∈ ((2, 2, 12), 4)	-	-	-	14.1
a+b+c+d	[-++0+00-+00-0-+]	∈ ((5, 5, 6), 4)	-	-	-	10.1
<u>(a+b+c)d</u>	$[0\ 0+-+-++-+0\ 0]$	∈ ((4, 6, 6), 3)	-	-	-	12.1
\mathcal{M}_{1} (16/64) proto-mass	$[0\ 0\ 0\ +\ 0\ +\ 0\ 0\ +\ 0\ 0\ 0]$	∈ ((0, 6, 10), 6)	-	-	-	13.1
\mathcal{M}_{2} (32/64) proto-mass	[++-0-0-++-0-0-++]	∈ ((4, 6, 6), 6)	-	-	-	7.08
<u>H</u> (16/64) Higgs	[-0 + + 0 - + + - 0 + + 0 -]	∈ ((4, 6, 6), 6)	-	-	-	7.08
$ab+cd = Bell = \mathcal{T}_{x}'$	[-00-0++00++0-00-]	∈ ((4, 4, 8), 2)	-	-	-	15.1
ab–cd = Magic = T_{χ}	[0 0 + 0 0 + + 0 0 + 0 0]	∈ ((4, 4, 8), 2)	-	-	-	15.1
$-\mathbf{ac} + \mathbf{bd} = \mathbb{B}_0$	[0 + - 0 + 0 0 0 0 + 0 - + 0]	∈ ((4, 4, 8), 2)	-	-	-	15.1
$ad - bc = M_0$	[0 + -0 - 0 0 + + 0 0 - 0 - + 0]	∈ ((4, 4, 8), 2)	-	-	-	15.1
a+bcd dark boson	[+00+0++00-0-00-]	∈ ((4, 4, 8), 2)	-	-	-	15.1
D ₀ dark matter	[-0-00-0+-0+00+0+]	∈ ((4, 4, 8), 8)	-	-	-	5.53
\mathcal{D}_{q} dark matter	[++-0++++0+]	∈ ((2, 7, 7), 8)	-	-	-	6.87
\mathcal{D}_{u} (80/96) dark matter	[0000-+-+0000++]	∈ ((4, 4, 8), 8)	-	-	-	5.53
\mathcal{D}_{u} (16/96) dark matter	[+0000000000000000-]	∈ ((1, 1, 14), 8)	-	-	-	15.9

* Higgs & dark matter states are *very common*; simple entangled states & others are *less so*

Novel Predictions using GALG

- GALG summation is true concurrency (non-relativistic)
- Neutrinos and W/Z bosons are 2D (with qubits)
- A fourth neutrino/anti-neutrino pair exists in 2D
- A nilpotent quaternion exists (X17 boson) in 3D
- Bell/Magic operators are irreversible in 4D
- All entanglement is space-like and 4D
- Tauquernions are 4D entangled quaternions
- Higgs boson are sums of tauquernions (4D nilpotent)
- Dark quarks exist as 4D quarks (Dark Energy)
- Dark matter are quad sums of dark quarks
- Electromagnetic propagation can be modeled in 5D

Summary and take away

- ★ *Combinatoric Hierarchy distinctions* is bits without embedding in 3D
- ★ *Hyperdimensional states* are more powerful than holographic models
- ★ Geometric Algebra is useful computer science paradigm for quantum computing and enables tools. Non-commutative math leads to many surprises (null states, multiplicative cancellation, irreversible bell, ...)
- ★ *True simultaneity* using addition is space-like and not relativistic.
- ★ Space/time proto-physics is connected to *non-Shannon* space-like information creation for co-occurrence (Coin-Demo)
- ★ Graded version of *Standard Model* for bosons/fermions
- ★ *Particle/Antiparticle* are co-exclusions (P+A=0)
- ★ Entanglement pervades tauquernion space, Higgs boson, dark states and dark matter
- ★ *Significance of space-like states* as a result of pervasive entanglement
- ★ Wholeness due to concurrent space-like states and entanglement

Questions and Answers

Hyperdimensional quantum computing is fundamental since exposes the infinite quantum bit reality of the universe.

Source Science is

